ICTRT Meeting - October 11, 2005

Members in attendance: Paul Spruell, Pete Hassemer, Charlie Petrosky, Howard Schaller, Fred Utter,

Michelle McClure, Tom Cooney, Rich Carmichael

Non-members in attendance: Vince, Randy, Damon Holzer, Don Matheson, Jon Honea, Rich Zabel,

Randy, Vince

- 1. November TRT meeting 2nd and 3rd in Portland
- 2. Oregon's expert panel approach
 - a. Require guidance on published literature that should be included
 - i. Documentation of conclusions necessary
 - 1. include written summary of sources
 - ii. Local & site-specific versus general relevance
 - 1. panel members can bring in a diversity of information
 - 2. utilization of sub-basin plans
 - 3. packet of materials provided by the TRT
 - b. panel must have current status and limiting factors to complete their analysis
 - i. finish Mid C. by the end of October (include hatchery fractions)
 - 1. address difficulties with the Deschutes
 - 2. John Day developed relationship between emap and redd index density
 - 3. Snake R. Steelhead is a lower priority than Mid C.
 - a. Begin prioritizing these stocks after January
 - ii. Two approaches to limiting factors for inclusion in the recovery plan
 - 1. TRT quantitative approach (GAP, Shiraz)
 - 2. expert panel process
 - iii. comments on expert panel approach to limiting factors
 - 1. need TRT recommendation for focus of expertise to be on the panel (6-10 people)
 - a. group of people from the John Day pilot monitoring project
 - b. use some local experts
 - c. at least one academic
 - d. distribution across agencies
 - e. include people with expertise across various factors such as ecology and evolution
 - 2. allocate time for process completion based on number of populations instead of based on ESU (as some ESUs have more populations than others)
 - 3. consider flow reversal (begin with factors) or include description of methods
- 3. Current status reviews
 - a. Finish all UC populations and scheduled MC populations by next meeting
 - b. After finishing the templates, the TRT (as a group) needs to review the scoring sections (at November meeting)
 - i. Conference call on UC Chinook
 - c. UC Steelhead stocks get templates to Casey early next week Casey to finish SSD by the end of the week
 - d. Attach back-page summary for viability information
 - i. Include references for spawner counts
 - ii. Include point estimate at 20% equilibrium (Bev-Holt metric)
 - iii. Label axes in curve-fit graphs?
 - e. Using BH fits for point estimates of productivity
 - i. Raw recruits/spawner
 - 1. problem with census and steelhead

- ii. consider adding R/S point on the viability curve
- f. Census technique
 - i. Minimum size thresholds should show signs of density dependence
 - ii. Consider using a fraction of the minimum size as the census point
 - iii. Plot multiple points on the curve?
 - iv. Workgroup to evaluate various census techniques and apply to some examples
 - v. Try using older datasets to get an idea of capacity
- g. Using Bev-Holt at 20% of equilibrium
 - i. How is the variance preserved across model types?
 - ii. Include a write-up of methods and examples for TRT members
 - iii. Questions of confidence you can take in fits with very few low points
- h. Add lambda to the viability metric table in the current status template
 - i. Also add standard errors to this table
- i. Workgroup for current status finalization and draft metric descriptions
 - i. TV conference in Portland on October 20th at 10:00
 - 1. Circulate back-page summaries
 - a. rational for 20% adjustment
 - b. status examples
 - 2. address question of what to do in the case of hatchery input disproportionately affecting localized areas within a population
 - ii. send examples in pdf?
 - iii. Change table numbers in current status drafts
- j. Update the viability document with current MiSA and MaSA numbers
 - i. Consider setting up a database for this purpose
- 4. Analyses in support of evaluating recovery strategies
 - a. Items to discuss
 - i. Gap in relation to the viability curve
 - ii. What kind of changes can close the gap?
 - iii. How much do current actions contribute to the gap?
 - iv. Need to define certainty of viability
 - 1. policy decision?
 - a. Must provide policy makers information on risk associated with various confidence intervals
 - 2. technical decision?
 - 3. specify a range
 - 4. discuss in workgroup meeting
- 5. Howard's work
 - a. Examined various stream attributes
 - b. Developed a model to evaluate egg-smolt survival
 - c. Compared model outputs to areas where actual data existed (egg-smolt, egg-parr)
 - d. Applied to lifecycle survival
 - e. Looked at total potential improvements over the lifecycle
 - f. Identified two scenarios
 - i. Current picture
 - ii. Scenario under potential improvements to the lifecycle
- 6. Shiraz modeling
 - a. List of habitat limitations should be expanded to cover yearling-type fish
 - b. Remove life stages with no available data
 - i. Add pre-spawn holding
 - c. choose a group of factors that relate to survival at various life stages
 - i. temperature: egg-estuarine?
 - ii. Predation and competition (non-normative)
 - iii. Toxics
 - iv. Nutrients

- v. Instream flow add additional perspectives
- vi. entrainment
- d. stream structure (define by life stage)
 - i. needs to capture quantitative habitat loss for over wintering
- e. how do you take into account the interaction between factors, life stages?
 - i. How does EDT accomplish this?
- f. Should there be a penalty for hatchery fish (as parents)?
- g. Shiraz tasks before next meeting
 - i. Development of functional relationships
 - ii. Examine empirically based relationships in EDT
 - iii. Draft UC appendix EDT approach (check woody debris, etc.)
- h. Tasks for a future date
 - i. Output of Shiraz (R/S, Bev-Holt fit, relationships)
 - 1. evaluate after examples
- 7. Leslie matrix model
 - a. Comparison of results using autocorrelation
 - b. Scale down model outputs to the level of a single population and compare to population level model extinction risk
 - c. Concept of extending to steelhead and Mid. C.
 - d. Optimistic/pessimistic range determination
 - e. Get error/confidence for point estimates
 - f. How does the model account for hatchery fish?
 - i. Doesn't currently, but working on it
 - ii. How do hatchery actions affect viability?
 - g. explore a range of habitat conditions
 - i. pristine, average, trashed
 - ii. examine habitat quality outside the population area (migration phase)
 - h. explore a range of size categories
 - i. location of components in the matrix
 - i. conclusion
 - i. move forward with general approach, but focus on populations
 - 1. look at prospective viability under alternative hydro scenarios
 - a. how does this change under different climate and harvest regimes?
 - b. How much improvement do we need in freshwater survival to reach viability?
 - i. Is this reasonable?
 - c. Are there reasonable combinations of hydro and freshwater improvements that can get you to viability?
- 8. Other viability concerns
 - a. Need more detail on phenotypic SSD metric
 - i. If everything else is low risk and this metric has no data, you are allowed to ignore it
- 9. Spatial structure and diversity
 - a. B.2.a.
 - i. 4 metrics lack of ability to aggregate
 - ii. could have a case of strays from multiple sources
 - 1. could result in a lower risk than is actually present
 - iii. may be able to simplify without changing the decision tree
 - 1. have a decision at the mechanism level
 - a. "Is the aggregate > x?"

- iv. Tom, Paul, Fred conference call to discuss
- 10. key example populations (develop matrices, finished by end of next month)
 - i. SRSS March, South Fk., Catherine
 - ii. UC Chinook Chiwawa/Wenatchee, Methow, Entiat (none prioritized?)
 - iii. MC Steelhead Umatilla
 - iv. SR Steelhead Rapid
 - v. UC Steelhead Wenatchee
 - b. Data needed for Rich Z.
 - i. Recruits and spawners (with age structure)
 - ii. Parr smolt survival (annual estimates)
 - c. Compare/contrast autocorrelation function
 - i. Two autocorrelation models
 - 1. mimic the long term PDO
 - 2. mimic the 1977- climate conditions
 - d. establish/fix hydro scenarios (optimistic/pessimistic)
 - i. use current with 1 standard deviation
 - 1. apply proportional SD to the BiOp
 - 2. model scenario as if we were 11 years out (meeting the BiOp)
 - 3. model scenario at 6 years of survival
 - e. outputs for comparison with the viability curve (workgroup Oct. 20)
 - f. compare/contrast with fit to R/S
 - i. relevant for ESU level
 - ii. compare with observed freshwater (Grande Ronde)
- 11. Follow up on Shiraz
 - a. Information for populating model relationships
 - i. Howard and Tom get information to Jon (include paper by Dale)
 - ii. Evaluate relationships stage by stage
 - iii. Apply to some of the same populations being used for the matrix model
 - iv. Diversion entrainment likely little effect
 - v. Examine HUC-6
 - b. EDT key factors
 - i. Also Apdx F of draft UC; under structure; written by Casey Baldwin
 - c. EDT functional relationships
 - i. George (Pess?) says flow relationships were those he developed for west-side
 - ii. Woody debris are west-side based
 - d. QHA (?) data for habitat
 - i. Howard -- QHA classification
 - e. AHA Ford genetic penalty algorithm
 - i. Should penalties vary with source of hatchery stock or policy?
 - 1. Within MPG or from same pop?
 - f. Do stage-specific runs or calculations with B-H and FRs
 - i. To evaluate validity